

Communication

Regio- and Enantioselective *Inter*molecular Rhodium-Catalyzed [2+2+2] Carbocyclization Reactions of 1,6-Enynes with Methyl Arylpropiolates

P. Andrew Evans, Kwong Wah Lai, and James R. Sawyer

J. Am. Chem. Soc., **2005**, 127 (36), 12466-12467• DOI: 10.1021/ja053123y • Publication Date (Web): 18 August 2005 Downloaded from http://pubs.acs.org on March 25, 2009

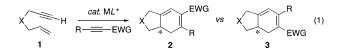
More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 12 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 08/18/2005


Regio- and Enantioselective *Inter*molecular Rhodium-Catalyzed [2+2+2] Carbocyclization Reactions of 1,6-Enynes with Methyl Arylpropiolates

P. Andrew Evans,* Kwong Wah Lai, and James R. Sawyer

Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Received May 12, 2005; E-mail: paevans@indiana.edu

Transition metal-catalyzed [m+n+o] carbocyclization reactions provide powerful methods for the construction of complex polycyclic systems that are generally not accessible through classical pericyclic reactions.¹ Although the *inter*molecular metal-catalyzed [2+2+2] carbocyclization reaction of carbon and heteroatom tethered 1,6-envnes with symmetrical 1,2-disubstituted alkynes has been described, a significant challenge with this process is the ability to regioselectively incorporate unsymmetrical 1,2-disubstituted alkynes.²⁻⁶ Furthermore, despite the myriad of metal-catalyzed carbocyclization reactions, the enantioselective version of the metalcatalyzed [2+2+2] carbocyclization of a 1,6-enyne has not been described. In light of these significant challenges, we sought to develop the combined regio- and enantioselective metal-catalyzed [2+2+2] carbocyclization reaction with unsymmetrical 1,2-disubstituted alkynes and thereby provide a new paradigm for this type of transformation. Herein, we now describe the regio- and enantioselective rhodium-catalyzed [2+2+2] carbocyclization of carbonand heteroatom-tethered 1,6-envnes 1 with unsymmetrical 1,2disubstituted alkynes to afford the corresponding bicyclohexadienes 2/3 in excellent yield (eq 1).

Preliminary studies focused on the development of the regioand enantioselective version of the rhodium-catalyzed [2+2+2]carbocyclization using the 1,6-enyne 1a as outlined in Table 1. Treatment of 1a with excess methyl phenylpropiolate and the chiral complex derived from AgOTf-modified [RhCl(COD)]2 with (S)-BINAP in benzene at 60 °C, furnished the bicyclohexadienes 2/3in 27% yield as a 2:1 mixture of regioisomers (entry 1).^{7,8} Although the overall efficiency and regioselectivity were not particularly encouraging, the major isomer 2a was obtained with high enantioselectivity (86% ee). Previous studies demonstrated that the overall efficiency could be improved dramatically by simply adjusting the nature of the solvent and/or counterion.5c In light of this fact, we probed the effect of coordinating solvents and silver salts with progressively weaker coordinating counterions (entries 2-5). Gratifyingly, the ethereal solvent tetrahydrofuran in combination with the tetrafluoroborate counterion proved optimal in terms of efficiency (entry 5), since these conditions completely suppressed the undesired homo-coupling of enyne 1a. Additional optimization focused on the nature of the chiral phosphine ligand to improve and potentially understand the factors that control regioselectivity. Interestingly, switching to (S)-Xyl-BINAP led to significantly improved regioselectivity (entry 5 vs 6). Hence, the more sterically hindered bisphosphine can more effectively discriminate the termini of methyl phenylpropiolate (Ph vs CO_2Me). The more π -acidic (S)-DIFLUORPHOS ligand, which has a narrower dihedral angle than (S)-Xyl-BINAP, furnished the product with diminished regio
 Table 1.
 Optimization of Intermolecular Rhodium-Catalyzed

 [2+2+2]
 Carbocyclization Reaction^a

TsN	/== . /	t. [RhCl(COD L*, Additive THF, 60 °C ————————————————————————————————————	- TsN CO ₂ Me	+ TsN	H (<i>S</i>)-3a	.Ph `CO ₂ Me
				yield	rs	<i>ee</i> of 2a
entry	solvent	additive	ligand (L*)	(%) ^b	(2a:3a) ^c	(%) ^{d,e}
1	PhH	AgOTf	(S)-BINAP	27	2:1	86
2	MeCN	~··	"	0	_	_
3	THF	"	"	68	3:1	92
4	"	AgSbF ₆	"	82	3:1	89
5	"	AgBF ₄	"	95	3:1	92
6	"	"	(S)-Xyl-BINAP	93	8:1	88
7	"	"	(S)-DIFLUORPHOS	73	4:1	97
8	"	"	(S)-P-PHOS	75	5:1	97
9	THF	AgBF ₄	(S)-Xyl-P-PHOS	98	10:1	97

^{*a*} All reactions were carried out on a 0.25 mmol reaction scale utilizing the chiral complex derived from 5 mol % of [RhCl(COD)]₂ and 12 mol % of the bidentate phosphine ligand, further *modified* with 20 mol % of silver salt and methyl phenylpropiolate (3 equiv) under an atmosphere of argon.¹¹ ^{*b*} Isolated yields. ^{*c*} Regioselectivity was determined by 400 MHz ¹H NMR on the crude reaction mixtures. ^{*d*} Enantiomeric excess of the major regioisomer **2a** was determined by chiral HPLC analysis. ^{*e*} The regioselectivity and absolute configuration of (*S*)-**2a** were established by NOESY and X-ray crystallography, respectively.

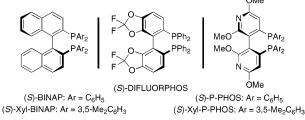
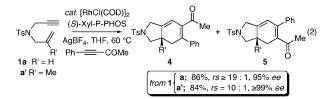


Figure 1. Chiral ligands used in the optimization studies.

selection, albeit with higher enantioselectivity (entry 7).⁹ In accord with this observation, the dipyridyl-phosphines CTH-(*S*)-P-PHOS and (*S*)-Xyl-P-PHOS ligands, which possesses a dihedral angle similar to that of (*S*)-DIFLUORPHOS (see Figure 1), afforded excellent enantioselectivity, in which (*S*)-Xyl-P-PHOS provided the optimum ligand in terms of regioselectivity (entry 9).¹⁰ This trend is analogous with the improvement observed for the switch from the (*S*)-BINAP to (*S*)-Xyl-BINAP ligand (entry 5 vs 6), presumably due to similar reasoning.

Table 2 summarizes the application of the optimized reaction conditions (Table 1, entry 9) to the various carbon- and heteroatom-tethered 1,6-enynes using an array of methyl *para*-substituted arylpropiolates. Interestingly, the carbocyclization reaction is highly enantioselective regardless of the nature of the enyne tether and/or the aryl substituent, whereas the yield and/or regioselectivity are influenced by these parameters. For example, although all the


Table 2. Scope of the Regio- and Enantioselective Rhodium-Catalyzed [2+2+2] Carbocyclization Reaction (eq 1; R = p-FG-C₆H₄, EWG = CO₂Me)^a

	÷ .,		,				
entry	1,6-enyne 1 X =		alkyne FG =	yield (%) ^b		rs (2:3) ^c	ee of 2 (%) ^d
1	TsN	a	Н	98	a	10:1	97
2	"	"	OMe	84	b	14:1	97
3	"	"	Me	95	с	11:1	97
4	"	"	F	87	d	10:1	97
5	"	"	CF_3	86	e	10:1	98
6	$C(CO_2Me)_2$	b	H	88	f	9:1	≥99
7	·	"	OMe	85	g	10:1	98
8	"	"	Me	80	ĥ	9:1	95
9	"	"	F	74	i	7:1	98
10	"	"	CF_3	65	j	5:1	98
11	0	с	H	86	ĸ	≥19:1	≥99
12	"	"	OMe	95	1	≥19:1	98
13	"	"	Me	87	m	≥19:1	98
14	"	"	F	75	n	17:1	≥99
15	"	"	CF ₃	72	0	17:1	97

^a All reactions were carried out on a 0.25 mmol reaction scale. ^b Isolated yields.¹¹ ^c Ratio of regioisomers was determined by 400 MHz ¹H NMR on the crude reaction mixtures. d Enantiomeric excess of the major regioisomer was determined by chiral HPLC analysis.12

enynes undergo regioselective carbocyclizations, the nature of the tether has a profound influence on the level of regiocontrol (O \gg $NTs > C(CO_2Me)_2$). Similarly, the overall efficiency and regioselectivity can be directly related to the electronic nature of the aryl substituents. This trend is particularly prominent with carbon tethers (entries 7-10), whereas regioselectivity and efficiency are somewhat affected in the nitrogen (entries 2-5) and oxygen tethers (entries 12-15), respectively. Overall, this work now provides access to previously unknown enantiomerically enriched bicyclohexadienes that are useful synthons for target-directed synthesis.

To further demonstrate the scope of this transformation, we elected to examine an alternative electron-withdrawing group within the alkyne. Treatment of the 1,6-envne 1a under the optimized reaction conditions with 4-phenyl-3-butyn-2-one furnished the bicyclohexadienes 4a/5a (R' = H) in 86% yield, with $\geq 19:1$ regioselectivity and 95% ee for 4a (eq 2).12 Additionally, we

envisioned the application of this methodology to a substituted 1,6enyne 1a' (R' = Me) would facilitate the enantioselective introduction of a quaternary carbon stereogenic center, which would be a particularly attractive feature of this methodology.¹³ Gratifyingly, treatment of 1a' under the optimized carbocyclization conditions with 4-phenyl-3-butyn-2-one furnished the quaternary substituted bicyclic azacycles 4a'/5a' (R' = Me) in 84% yield, with 10:1 regioselectivity and $\geq 99\%$ ee for **4a'**.¹²

In conclusion, we have developed the first regio- and enantioselective crossed intermolecular rhodium-catalyzed [2+2+2] carbocyclization of carbon- and heteroatom-tethered 1,6-enynes with unsymmetrical 1,2-disubstituted alkynes. This study clearly delineates the specific ligand requirements for obtaining excellent regioand enantioselectivity. Furthermore, the ability to utilize various electron-withdrawing groups, and to introduce quaternary carbon stereogenic centers, provides the level of versatility necessary for its application to target-directed synthesis. Additional studies on the development and application of this novel methodology to the total synthesis of natural products are currently underway.¹⁴

Acknowledgment. We sincerely thank National Institutes of Health (GM58877) for generous financial support. We also thank Johnson and Johnson for a Focused Giving Award, and Pfizer Pharmaceuticals for the Creativity in Organic Chemistry Award (P.A.E.).

Supporting Information Available: Spectral data for 2a-o and 4a/a' and X-ray crystallographic analysis of (S)-2a (where X = NTs, $R = C_6H_5$, and EWG = CO₂Me). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For recent reviews on metal-catalyzed carbocyclization reactions, see: (a) Aubert, C.; Buisine, O.; Malacria, M. *Chem. Rev.* 2002, 102, 813. (b) Nakamura, I.; Yamamoto, Y. *Chem. Rev.* 2004, 104, 2127.
 (2) For recent reviews on metal-mediated [2+2+2] carbocyclizations, see:
- (a) Malacria, M.; Aubert, C.; Renaud J. L. In Science of Synthesis: Houben-Weyl Methods for Molecular Transformations; Lautens, M., Trost, B. M., Eds.; Georg Thieme Verlag: New York, 2001; Vol. 1, pp 439– 530. (b) Varela, J.; Saá, C. *Chem. Rev.* **2003**, *103*, 3787. (c) Fujiwara, M.; Ojima, I. In Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; 2005; Chapter 7, pp 129-150 and pertinent references therein.
- (3) For pioneering work on the rhodium-catalyzed intermolecular [2+2+2] carbocylization using tethered 1,6-diynes and 1,6-enynes, see: (a) Grigg, R.; Scott, R.; Stevenson, P. J. Chem. Soc., Perkin Trans. 1 1988, 1357 (b) Grigg, R.; Scott, R.; Stevenson, P. J. Chem. Soc., Perkin Trans. 1 1988. 1365.
- (4) For a recent example of a rhodium-catalyzed [2+2+2] dimerization of 1,6-enynes, see: Oh, C. H.; Sung, H. R.; Jung, S. H.; Lim, Y. M. Tetrahedron Lett. 2001, 42, 5493.
- (5) For examples of an intermolecular metal-catalyzed [2+2+2] carbocyclization with various 1,6-enynes using symmetrical alkynes, see: (a) Pd: Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. **1987**, 109, 4753. (b) Ir: Kezuka, S.; Okado, T.; Niou, E.; Takeuchi, R. Org. Lett. **2005**, 7, 1711. (c) Rh: Evans, P. A.; Sawyer, J. R.; Lai, K. W.; Huffman, J. C. Chem. Commun. 2005, 3971.
- (6) For an example of an *inter*molecular cobalt-mediated [2+2+2] carbocyclization with various 1,6-enynes using an unsymmetrical alkyne, see: Chang, C.-A.; King, J. A., Jr.; Vollhardt, K. P. C. J. Chem. Soc., Chem. Commun. 1981, 53.
- (7) The in situ activation of [RhCl(COD)]₂ with AgBF₄ provides superior results as compared to the [Rh(COD)2]BF4 precatalyst in terms of chemical yield.
- (8) For an excellent review on the development of chiral bisphosphine ligands, see: Shimizu, H.; Nagasaki, I.; Saito, T. Tetrahedron 2005, 61, 5405 and pertinent references therein.
- (9) (a) Jeulin, S.; Duprat de Paule, S.; Ratovelomanana-Vidal, V.; Genêt, J.-
- (d) Seampion, N.; Dellis, P. Angew. Chem., Int. Ed. 2004, 43, 320.
 (10) (a) Pai, C.-C.; Lin, C.-W.; Lin, C.-C.; Chen, C.-C.; Chan, A. S. C.; Wong, W. T. J. Am. Chem. Soc. 2000, 122, 11513. (b) Wu, J.; Chen, H.; Kwok, W. G. Li, C. C. C. Chen, C. C. C. Chen, C. Chen, C. Chen, C. Chen, C. Chen, C. Chen, C. Ch W.; Guo, R.; Zhou, Z.; Yeung, C.; Chan, A. S. C. J. Org. Chem. 2002, 67, 7908
- (11) Representative Experimental Procedure: [RhCl(COD)]2 (6.2 mg, 5 mol %) and AgBF₄ (9.7 mg, 20 mol %) were suspended in anhydrous THF (1.0 mL) and stirred at room temperature under an atmosphere of argon for *ca*. 10 min. (*S*)-Xyl-P-PHOS (22.7 mg, 12 mol %) in anhydrous THF (3.0 mL) was then added to the yellow suspension, and the mixture was stirred at room temperature for an additional *ca*. 30 min. Methyl phenylpropiolate (120.1 mg, 0.75 mmol) was added in one portion, followed by addition of 1,6-enne 1a (62.3 mg, 0.25 mmol) in anhydrous THF (2.0 mL) via syringe pump over ca. 2 h at 60 °C, followed by an additional ca. 30 min (TLC control). The reaction mixture was allowed to cool to room temperature, and the resultant mixture was filtered through a short pad of silica gel (eluting with 50% ethyl acetate/hexanes) and concentrated in vacuo to afford the crude product. Purification by flash chromatography (silica gel, eluting with a 10-30% ethyl acetate/hexanes gradient) afforded the bicyclohexadienes 2a/3a (94.1 mg, 98%) as a white solid, with 10:1 regioselectivity and 97% ee
- (12) The absolute configuration was made by analogy with (S)-2a, which was determined by X-ray crystallography.
- (13) For recent reviews on the enantioselective construction of quaternary carbon stereocenters, see: (a) Christoffers, J.; Mann, A. Angew. Chem Int. Ed. 2001, 40, 4591. (b) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105 and pertinent references therein.
- (14) The application of this methodology to alkyl-substituted alkynes also provides excellent enantioselectivity, albeit with diminished regioselectivity. Hence, conjugated alkynes (where R = aryl or vinyl) are crucial for achieving useful levels of regiocontrol. For example, for 1a, where EWG = CO_2Me and R = Me (rs = 4:1, 97% *ee*, 90%) whereas R = $C(=CH_2)Me (rs = 10:1, 97\% ee, 66\%).$

JA053123Y